Bounds for the Adjacent Eccentric Distance Sum
نویسندگان
چکیده
The adjacent eccentric distance sum index of a graph G is defined as ξsv(G) = ∑ v∈V (G) ε(v)D(v) deg(v) , where ε(v), deg(v) denote the eccentricity, the degree of the vertex v, respectively, and D(v) = ∑ u∈V (G) d(u, v) is the sum of all distances from the vertex v. In this paper we derive some upper or lower bounds for the adjacent eccentric distance sum in terms of some graph invariants or topological indices such as Wiener index, total eccentricity and minimum degree. Mathematics Subject Classification: 05C12; 05C75
منابع مشابه
On the Adjacent Eccentric Distance Sum Index of Graphs
For a given graph G, ε(v) and deg(v) denote the eccentricity and the degree of the vertex v in G, respectively. The adjacent eccentric distance sum index of a graph G is defined as [Formula in text], where [Formula in text] is the sum of all distances from the vertex v. In this paper we derive some bounds for the adjacent eccentric distance sum index in terms of some graph parameters, such as i...
متن کاملRelations between Zagreb Coindices and Some Distance–Based Topological Indices∗
For a nontrivial graph G, its first Zagreb coindex is defined as the sum of degree sum over all non-adjacent vertex pairs in G and the second Zagreb coindex is defined as the sum of degree product over all non-adjacent vertex pairs in G. Till now, established results concerning Zagreb coindices are mainly related to composite graphs and extremal values of some special graphs. The existing liter...
متن کاملExtremal values on the eccentric distance sum of trees
Abstract: Let G = (VG, EG) be a simple connected graph. The eccentric distance sum of G is defined as ξ(G) = ∑ v∈VG εG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v) = ∑ u∈VG dG(u, v) is the sum of all distances from the vertex v. In this paper the tree among n-vertex trees with domination number γ having the minimal eccentric distance sum is determined and the tree among n-...
متن کاملSome results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
متن کاملFurther results on the eccentric distance sum
The eccentric distance sum (EDS) is a novel graph invariant which can be used to predict biological and physical properties, and has a vast potential in structure activity/property relationships. For a connected graph G, its EDS is defined as ξ d (G) = ∑ v∈V (G) ecc G (v)D G (v), where ecc G (v) is the eccentricity of a vertex v in G and D G (v) is the sum of distances of all vertices in G from...
متن کامل